Computational analyses are playing an increasingly central role in research. Journals, funders, and other researchers are calling for published research to include associated data and code. However, many researchers have not received training in best practices and tools for sharing code and data.
This is a step-by-step, practical workshop to prepare your research code and data for computationally reproducible publication. The workshop starts with some brief introductory information about computational reproducibility, but the bulk of the workshop is guided work with code and data. We cover the basic best practices for publishing code and data. Participants move through best practices for organizing their files, preparing their code for reuse, documentation, and submitting their code and data to share using Code Ocean.
Prerequisites: Participants should bring their own data, code, and laptop.
Audience: Researchers who use code in their research and wish to share it.
Workshop goals:
Hosted in partnership with IQSS and Harvard Dataverse.
April is an epidemiologist, methodologist, and expert in open science tools, methods, training, and community stewardship. She holds an MS in Population Medicine (Epidemiology). Since 2014, she has focussed on creating curriculum and running workshops for scientists in open and reproducible research methods (Center for Open Science, Sense About Science, SPARC) and is co-author of FOSTER's Open Science Training Handbook. In her current role as Outreach Scientist at Code Ocean, she trains scientists in computational reproducibility best practices.